人工知能専門分野を新設!
実社会での人工知能技術の多様な利活用ができる人材を養成
概要
人工知能は,20世紀半ばから注目されてきた情報科学の主要分野の一つです。21世紀に入った頃から,深層学習理論が飛躍的に進展してきたこと,インターネットを通してビッグデータの取得が容易になり,データサイエンスの新たな中核技術の一つとして利用可能となってきたこと,マイクロプロセッサをはじめとするコンピュータシステムの高速化・大容量化が一層加速したことなどが相俟って,人工知能は社会を大きく変革する基盤技術となりました。自然言語,音声,画像理解や探索・推論などを中核技術として,自動翻訳,速記録の自動作成,顔認識,自動車の自動運転,医療情報処理,介護サービス等のロボット,囲碁等のゲーム,eスポーツ等の各種エンターテインメントなど,人工知能の応用分野の対象範囲は大きな広がりを見せています。さらにはデータサイエンスの新たな中核技術として,ビッグデータを活用した企業ビジネス戦略の立案・再構築,ウェブビジネス,農業経営,金融工学(フィンテック)など新ビジネスの展開,大量非定型文書に対する新たな情報発掘と利活用(テキストマイニング)など,従来の統計学では成しえなかった新しい応用分野での人工知能の活用は枚挙にいとまがありません。
本学が設置する人工知能専門分野では,人工知能の基礎理論やデータサイエンスなどの関連技術を学び,人工知能応用分野でそれらがどのように活かされているのかを実例を通して理解し,その上で多くの人工知能関連ソフトウェアに習熟して人工知能技術を利活用できる専門家を目指します。また,人工知能応用ソフトウェアの開発をも担える高度な技術者の育成プログラムも準備しています。
目指す人材像
- 人工知能の基礎や応用技術を学び,来たるべき人工知能社会を「生きる力」を備えた人材
- 大規模Pythonプログラムの開発能力を有し,既存の人工知能関連ソフトウェアを利活用できる人材
- パターン認識(画像・音声・言語など)系やビジネス系における斬新な人工知能応用ソフトウェアの開発をも担える高度な技術者
マスタープロジェクト担当教員の声
富田眞治教授
人工知能にとって数学などの基礎理論が重要だ,人工知能にとって重要なのは1にも2にも3にも数学だ,などと昨今言われています。一方で数学というとそれだけで嫌気がさしてしまう学生も多く,おいしい果実があるのに,食わず嫌いで終わってしまうのはどう見てももったいないと言えます。2045年には人工知能が人間にとって代わるシンギュラリティを起こす,などとはとても思えませんが,人工知能が大きく社会を変革していくことは間違いのない事実だと思います。人工知能社会を「生きる力」を蓄えておく必要があります。必要に応じて基礎理論を勉強し,理解した後は,基礎理論は忘れてもいいので,まずは人工知能の技術に触れてみる必要があるでしょう。
マスタープロジェクト担当教員の声
今井正治教授
Industry 4.0, Society 5.0を実現し,人間中心の社会を構築していくためには,人工知能,IoT,ビッグデータ解析の3つの技術が必要不可欠です。特に人工知能がこれからのビジネスの中でも普段の生活の中でも人間のアシスタントとして重要な役割を果たす社会になると思います。そこで皆さんには,様々な課題を解決する人工知能を使いこなす力や人工知能を用いた応用プログラムを開発する力を身につけてほしいと思います。Pythonは人工知能だけでなく,IoTやビッグデータ解析の分野でも最もよく使われているプログラミング言語です。そこで皆さんには人工知能を使いこなすための道具としてPythonをしっかり学習してほしいと思います。
学習者のレベルに応じた科目と履修の例
【第1セメスタ】
人工知能利活用の基礎知識および基礎技術の修得
- コンピュータプログラミング(Python)
- プログラミング言語Pythonは人工知能およびデータサイエンスなどの処理に適した多様なライブラリーを揃えたオブジェクト指向のスクリプト言語です。本科目では,Python言語の基本的な知識やプログラミング技法などを学ぶとともに,プログラミング演習を行うことによって,人工知能やデータサイエンスの分野で用いられる実用的なPythonプログラムを開発するために必要なスキルを身につけます。
- 人工知能概論
- 本科目では,「人工知能とはいかなるものか」を理解するための入門的な講義を行います。「人工知能の定義」,「人工知能研究の歴史」,「機械学習をはじめとする人工知能の基礎理論」,「人工知能の今日的課題」,「人工知能の利用と倫理」等について包括的に学習し,より専門的な講義の理解に役立てます。
【第2セメスタ】
人工知能理論,応用ソフトウェアによる人工知能利活用の学習
- 機械学習
- 人工知能の核である「機械学習(ML: Machine Learning)」を実現する基本技術として,(1)人間の概念形成過程を模した概念形成モデル,(2)神経細胞網の情報処理プロセスを模した階層型ニューラルネットワーク,(3)生命進化を模した進化的計算手法等を学びます。最適なクラス分類モデルを上記ML各手法を用いて構築できる能力の涵養,PythonとKerasやscikit-learnライブラリ等を用いてML各手法を記述できる能力の涵養を目指します。
- データマイニング
- データマイニング(DM)は,様々な分野の膨大な量の混沌とした情報やデータを分類・整理し,その背後に隠れている法則性を解明したり,様々な知識を発見・採掘して,人間社会に役立てる技術です。本科目では,DMに利用できる様々な手法,関連するアルゴリズム,およびそれらの適合性や応用について述べ,様々な形式で存在する可能性のあるデータをマイニングするためのツールと手法を特定して,学生にそれらを使用できる能力を提供します。
【第3,4セメスタ】
人工知能の実用例およびアプリ開発の学習
①パターン認識系における人工知能の応用例の学習
- ロボットと人工知能
- ロボットは産業用ロボットとして発展してきましたが,今日,人工知能が加わり,家庭用,医療・介護用,警備用,倉庫管理用,受付業務用,オフィス定型業務支援(RPA, Robotic Process Automation)など幅広く普及しています。本科目では,ロボットをエージェントと捉えてエージェントの知能モデルについて学習し,引き続きロボットの基本構造と要素技術を概説し,種々の分野のロボット事例について学習します。
- ゲームと人工知能
- 人工知能技術の発展は,囲碁で世界トップクラスのプロの棋士を破って衝撃を与えた「AlphaGo」,さらにその手法をチェスや将棋などにも適用可能となるように汎化させた「AlphaZero」を生み出してきました。本科目では,これらのコンピュータゲームで用いられている,深層学習,モンテルカルロ木探索,強化学習などの技術を修得します。さらに,リアルタイム・インタラクテティブ・コンテンツのリアリティを追求するために必要な,キャラクターの「人間らしさ」の実現方法についても学習します。
②ビジネス系における人工知能の応用例の学習
- 人工知能農業先端事例研究
- 昨今急速に失われつつある熟練農業者の経験則や暗黙知を,ICTや人工知能を用いて形式知化し,他の農業者や新規参入者に継承していく新しい農業が展開されるようになっています。本科目では,人工知能が農業分野においてどのように応用されているかについて実例を通して学びます。
- フィンテック論
- 本科目では,まず,金融機能の理論実務両面について,現状の課題と将来像を理解します。その後,具体的なフィンテック技術に進み,資産運用や信用リスク評価等の事例に触れながらその本質を明らかにします。金融の担い手が既存の銀行や保険会社からITベンチャーに移る可能性や人工知能の新たな利活用などについて論じます。
「ITU AI/ML in 5G Challenge」大会での発表が国内最優秀賞を受賞しました
通信ネットワークに機械学習を応用し実世界での課題を解決することを目的とした「ITU AI/ML in 5G Challenge」大会(2020年11月11日に開催)に参加した本学の教員と学生チームが,大会で発表を行い,日本国内上位3チームに選出されたうえ,最優秀賞を受賞しました。本学のチームは大会が提示した3つのテーマの中から,「リアルタイムストリーミングサービスにおける映像解析によるネットワーク状態推定」を選び,リアルタイムで機械学習を用いることで,ネットワーク状態(スループットとロス率)を推定しました。このテーマは,新型コロナウイルスの世界的な感染拡大により,世界中でZoomなどウェブカメラを利用したテレワークシステムの利用が急増し,結果として極度の輻輳状態が発生している現代社会特有の課題解決に寄与しうるタイムリーなテーマです。機械学習は今や,社会のライフラインである通信ネットワークのあり方を左右するもので,今回の発表は,未来のネットワークに機械学習を適用する方法の1つを提案するものです。このモデルを用いて将来,通信速度の低下,通信の遅延対策の向上や通信システム自体の改善が実現できる可能性があり,今後の活用が期待されます。